TDLS based complexes ^{A3} development for impurities detection in high-purity hydrides

A.G.Berezin, A.I.Nadezhdinskii, Ya.Ya.Ponurovskii, I.P.Popov, Yu.P.Shapovalov, D.B.Stavrovskii, I.E.Vyazov

A. M. Prokhorov General Physics Institute of RAS 38 Vavilov str., 119991 Moscow, Russia. E-mail: <u>Nad@nsc.gpi.ru</u>

N.D.Grishnova, A.P.Kotkov, D.M.Polezhaev, A.V.Shirayev

Scientific-industrial enterprise "Salut" 603950, Larina Str. 7, Nizhnii Novgorod, Russia Scientific-Industrial Enterprise SALUT

Introduction

High-purity hydrides (AsH₃, PH₃, NH₃, GeH₃, SiH₄) are using for semiconductors production. Quality of semiconductors manufactured depends on impurities presence. There are many possible impurities in hydrides. H₂O, NH₃, H₂S, CO₂, and C₂H₄ are considered as most important.

Real time impurities concentration measurement during purification process is very important.

Requirements: One bottom operation, reliability, selectivity, quick response, concentration range $10^{-7} - 100$ %.

Goal – to investigate hydrides spectra and to develop family of TDLS based complexes for continuous impurities control during hydrides purification.

Purification process

High purity hydride unloading from rectification column.

Family of TDLS complexes developed

Family of TDLS complexes was developed to measure impurities concentration in real time.

- 1. H₂O in NH₃
- $2.H_2O$ in PH_3
- $3. \text{NH}_3 \text{ in PH}_3$
- $4. NH_3$ in AsH₃ in "raw", "pure", and "LF" channels
- 5. CO_2 and H_2S in AsH₃ in "raw", "pure", and "HF" channels
- $6.C_2H_4$ in AsH₃ in "raw", "pure", and "HF" channels

Spectroscopy

For majority of molecules under consideration spectral information in near IR are unavailable. Spectra were recorded using 3 channels DL based spectrometer developed and Bruker IFS 66v (spectral resolution 0.01 cm⁻¹).

View of 3 channels DL based spectrometer developed with gas distribution system to deal with hazard objects.

Electronics

All TDLS complexes contain the same set of electronics

National Instrument USB DAQ

Electronics developed by GPI and Canberra Albuquerque and manufactured by Canberra Albuquerque

View of reference channel

Analytical line for H₂O in NH₃

Selection of analytical line to measure water vapor in ammonia.

Analytical H₂O spectral line shapes for different NH₃ pressures: 760, 500, 400, 300, 100, 20 Topp.

0.0001

0.0000

H₂O in NH₃

View of TDLS complex developed to measure water vapor concentration in NH₃

Water concentration measurement in heavy fraction (HF) during purification process

Analytical NH₃ line in 1.51 μ range

AsH₃ spectrum

NH₃ in AsH₃ and PH₃

View of 3 channels TDLS complex developed to measure NH_3 in AsH_3 and PH_3 .

NH_3 detection in 3 channels: raw (green), pure (red), LF (white).

CO_2 and H_2S in AsH_3 and PH_3

Both CO₂ and H₂S have absorption in 1.6 μ range and can be detected using the same DL. There was no information about AsH₃ and PH₃ in this spectral range. Spectra were recorded using 3 channel DL spectrometer developed.

AsH₃ absorption in spectral range under consideration. Raw AsH₃ sample was used having CO_2 and H_2S impurities. No significant PH₃ absorption was observed.

Analytical line selection

Absorption spectra of CO_2 (red) and H_2S (black) in spectral range under consideration as recorded by TDLS.

Analytical lines to detect CO_2 and H_2S were selected to have no interference with AsH₃ absorption. Spectra recorded L=140 cm: red - P=0.2 Bar of gas mixture Ar: CO_2 : H_2S =1:0.46:0.054. black - P=0.1 Bar of raw AsH₃ sample. Impurities presence can be easily observed.

CO_2 and H_2S in AsH_3 and PH_3

View of 3 channels TDLS complex developed to measure CO_2 and H_2S in AsH₃ and PH₃.

Simultaneous measurement of CO_2 (white) and H_2S (blue) in two channels containing cells with following gas mixtures:

Upper – 365 Torr CO_2 and 70 Torr H_2S . Lower – 43 Torr CO_2 and 3.6 Torr H_2S .

Conclusion

Spectra of molecules under consideration (hydrides and impurities) were recorded in near IR spectral range (some of them for the first time). Analytical lines to detect different impurities in hydrides were selected. 6 TDLS complexes were developed and installed in Scientific-industrial enterprise "Salut" (Nizhnii Novgorod) to control process of hydrides purification in real time.